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Nonconservative Abelian sandpile model with the Bak-Tang-Wiesenfeld toppling rule
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A nonconservative Abelian sandpile model with the Bah-Tang-Wiesenfeld toppling rule introduced by
Tsuchiya and Katori@Phys. Rev. E61, 1183~2000!# is studied. Using a scaling analysis of the different energy
scales involved in the model and numerical simulations it is shown that this model belongs to a universality
class different from that of previous models considered in the literature.

PACS number~s!: 05.65.1b, 05.70.Ln
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I. INTRODUCTION

Recently Tsuchiya and Katori@1# have introduced a non
conservative Abelian sandpile model with a toppling ru
similar to that of the well known Bak, Tang, and Wiesenfe
~BTW! sandpile model@2#. The model is defined in a squar
lattice of sizeL and an integer energy profilezi j is consid-
ered. Sites with energy below the thresholdzc54az are
stable. If the energy at any given site (i , j ) exceeds this
threshold the site transfers energy to its four nearest ne
bors following the toppling rule:zi j →zi j 2zc , zi 61 j→zi 61 j

1z and zi j 61→zi j 611z. z is an integer number anda is
such thatzc is also an integer. The boundaries are assume
be open and the system is perturbed by adding a uni
energy at a site selected at random and letting it evolve u
an equilibrium configuration is reached.

On each toppling event an amount of energye54z(a
21).0 is dissipated. Fora51 the model is conservative;
is just the BTW model but with a different scale of topplin
and energy addition. In the BTW model@2# the energy added
to perturb the system is 1 and on toppling an active
transfers an energy 1 to each neighbor; they are of the s
order. In the model defined above the energy added is st
but the energy transferred on toppling isz. In the limit a
51 andz51 the BTW model@2# is recovered while fora
51 and z@1 it is similar to the BTW model but with a
uniform driving.

In the BTW model (a51 andz51) the avalanches ca
be decomposed in a sequence of subavalanches called w
@3# with well-defined finite-size scaling properties. On t
contrary, the distribution of the overall avalanche sizes is
better described using a multifractal analysis@4#. The break
down of the finite-size scaling has been recently shown to
a consequence of the existence of correlations in the
quence of waves@5#.

For a.1 the model is nonconservative but still Abelia
@1#. In the thermodynamic limitL→`, exact calculations by
Tsuchiya and Katori yield the mean avalanche size~includ-
ing avalanches with size zero! ^T&5e21 @1#. Since e
54z(a21) they concluded that in the limita→1^T& di-
verges. However, as it is shown in Sec. II this conclusion
wrong becausea cannot go to zero in an arbitrary way, i
order to satisfy the constraint thatzc54az remains integer.
Here it is demonstrated thate>1 and, therefore,̂T&<1 for
all possible values ofz anda.
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The main goal of this work is to investigate the scali
properties of this nonconservative BTW-like model in t
limit a→1. The main questions are related to the existe
or not of criticality in the conservative limita→1 and if in
this limit one recovers the conventional BTW modela51.
From the analysis of the energy scales involved in the mo
~Sec. II! and numerical simulations~Sec. III! it is concluded
that the model is critical whena→1 but it does not belong
to the universality class of the BTW model. Its relation
other nonconservative models with the BTW-like topplin
rule introduced in the literature@6–8# is also discussed~Sec.
III !.

II. SCALING LAWS

In this section some scaling laws are derived based on
energy scales involved in the model. The main idea of t
approach is that the balance between input and dissipatio
energy determines the scaling of some magnitudes with
dissipation per toppling event, following the general guid
lines introduced by Vespigananiet al. @9#. For this purpose
the avalanches are assumed to be instantaneous an
analysis is focused on the time scale of the driving field.
each step one adds 1 unit of energy and measures the
pling activity and the energy dissipated. On each toppl
event an amount of energye54z(a21) is locally dissi-
pated while an amount 4z is transferred to nearest neighbor
For boundary sites part of the energy is also dissipa
through the boundary.

Let G(r ) be the Green function@10#, the average numbe
of toppling events at a distancer from the site where the
energy was added. Close tor 50 the effect of local dissipa-
tion gives a small contribution and the main energy scale
given by the transport of the energy from active sites to th
nearest neighbors. On the contrary, far fromr 50 the effects
of the local dissipation becomes more important. How
will depend on the certain correlation lengthj, such that for
r !j transport is more important than local dissipation wh
for r @j the opposite occurs.

Thus, there are two characteristic lengths in this mod
the system sizeL and the correlation lengthj. The analysis
developed above is valid in the thermodynamic limitL@j.
In this case the dissipation through the boundary of the s
tem is negligible in comparison with the energy dissipated
each toppling event. In such a situation the only way to re
a stationary state is to balance the input of energy from
7797 ©2000 The American Physical Society
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7798 PRE 62ALEXEI VÁ ZQUEZ
driving field with the energy locally dissipated. Moreove
sincej is the only characteristic lengthG(r ) is expected to
satisfy the scaling law

G~r !5r h2dF~r /j!, ~1!

whereh is an scaling exponent andd is the spatial dimen-
sion.

The amount of energydEd(r ) locally dissipated inside a
hypercircle of radiusr is

dEd~r !}eE
0

r

drrd21G~r!}ejh f ~r /j!, ~2!

where f (x)5*0
xdyyh21F(y) and the second proportionalit

is obtained using Eq.~1!. On the other hand, the averag
energy transported through its boundarydEt(r ) is given by

dEt~r !}zr d21
dG

dr
~r !}zjh22g~r /j!, ~3!

whereg(x)5d@xh22F(x)#/dx and the second proportiona
ity is obtained using Eq.~1!. The correlation lengthj can be
defined as the radiusr at which these two contributions be
come of the same order. With this definition and equat
Eqs.~2! and ~3! with r 5j it results that

j;S z

e D n

, n5
1

2
. ~4!

On the other hand, on each step 1 unit of energy is ad
and on average the amounte^T& is dissipated, wherêT&
}*0

`drr d21G(r ) is the mean avalanche size, including av
lanches with size 0. Equating these two contributions it
sults that

^T&5
1

e
5

1

4z~a21!
. ~5!

Moreover, using Eq.~1! one obtains

h50. ~6!

Equation~5! reproduces the exact result by Tsuchiya a
Katori. The present approach is, however, based on m
general arguments and can be easily adapted to any san
model with local dissipation. The same argument~energy
balance! has been previously used by Vespigananiet al. @9#
to understand the scaling properties of other sandpile mo
with local dissipation. Here, a slightly different approach h
been considered where the new parameterz, the ratio be-
tween the energy received from nearest active neighbors
from the driving field, has been taken into account.

From Eq. ~5! Tsuchiya and Katori concluded that whe
a→1^T& diverges. However, this conclusion is not valid
zc54za is restricted to be an integer number. To show t
let us write a511e/4z which follows from Eq.~5!. But
4za54z1e is restricted to take integer values. Withz be-
ing an integer number the only way to satisfy this requi
ment is thate is also integer, i.e.,e51,2,3, . . . . Then, since
the smaller non-negative integer is 1 it is concluded thae
>1 and, therefore, from Eq.~5! ^T&<1, i.e., it is bounded.

Nevertheless, the correlation lengthj in Eq. ~4! does not
only depend one but also onz. For fixede it diverges in the
limit z→` and the model is critical. The real control param
g
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eter is thenee f f5e/z, i.e., the energy dissipated per topplin
event relative to the characteristic energy scale of trans
z. Although this result is in complete agreement with t
field theory approach of Vespignaniet al. @9# the fact that
^T& does not diverge whenee f f→0 (z→`) excludes this
model from their analysis.

Moreover, in previous sandpile models conservation i
plies the scaling laŵ s&;j2, where ^s& is the mean ava-
lanche size excluding those with size 0@9#. To investigate
the validity of such a scaling relation for the present mo
let us take into account that^s& is related tô T& through the
expression

^s&5^T&/Pa , ~7!

wherePa is the probability of obtaining an avalanche wi
nonzero size. In the models considered by Vespignaniet al.
@9# z51 and, therefore, from Eqs.~4!, ~5!, and~7! it results
that ^s&;j2/Pa . Moreover, in this modelPa has a finite
value and, therefore, one obtains the mentioned scaling
^s&;j2.

On the contrary, in the model considered here^s& cannot
be related toj using these arguments. For fixede from Eqs.
~5! and ~7! one obtains that̂s&;1/Pa . Thus, from the en-
ergy balance invoked above we cannot say anything ab
the scaling of̂ s& with j ~an exponent 2 will be an accidenta
coincidence! and, therefore, this model belongs to a new u
versality class.

III. NUMERICAL SIMULATIONS AND DISCUSSION

In this section results obtained from numerical simu
tions of the model studied above are presented. The sim
tions were performed usinge51, L54096, andz ranging
from 20 to 210 (ee f f51/z ranging from 1 to 2210). For these
values the conditionL!j was observed to be satisfied. St
tistics was taken over 108 avalanches after the syste
reached the stationary state.

Before entering in the analysis of the statistics of the a
lanches let us check the validity of Eq.~5!. The log-log plot
of ^s& vs z is shown in Fig. 1. A clear linear behavior i
observed for log10z>5 suggesting that above this valu

FIG. 1. Log-log plot of the mean avalanche size~excluding
avalanches with sizes50) as a functionz. It can be clearly seen
that it scales asPa

21 , the probability per unit step to obtain a
avalanche withs.0. The line is a linear fit to the highz interval.
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simple scaling applies. On top of these points the num
cally computed values of 1/Pa are plotted obtaining an over
lap in agreement with Eq.~5!. If the scaling relation̂ s&
;j2 were valid, using Eq.~4!, ^s&;z. However, a linear fit
to this log-log plot gives a slope;0.9.

The fact that this scaling relation does not hold is clea
shown in Fig. 2, where the stationary energy distribution
shown. As can be seen,zPa5zP$zc21% increases with in-

creasingz and, therefore,Pa decreases more slowly tha
1/z. The rest of the distribution scales like 1/z which is just
a consequence of the increase of the density of possible
ues ofz.

The avalanche statistics will be characterized by the nu
ber of toppling eventss and stepst required to reach a stabl
configuration, the number of sitesa ‘‘touched’’ by the ava-
lanche, and the characteristic radius of the cluster formed
these sitesr. The main goal of the simulations is to dete
mine the probability densitiespx(x,z) (x5s,t,a,r ) in the
stationary state.

One can easily see thats5a; in other words sites topple
only once within an avalanche. In this model, as a differe
with the original BTW model, only one wave of toppling
takes place. The first wave is generated from an initial
with heightz5zc54z1e. When this site topples it transfer
an amount equal tozc to its nearest neighbors and, therefo
ends with energyz50. The best we can have to obtain
second toppling at this site is that its four nearest neighb
also become active. In such a case the initial side will rece
4z,zc units of energy, which is not enough to make it acti
again. Hence, no second wave will be obtained yieldins
5a.

Since the waves are known to satisfy well-defined fini
size scaling properties and in the present model an avala
is made by one wave, it is expected that the distributio
px(x,z) also satisfy a finite-size scaling. However, the sc
ing exponents will not necessarily be those obtained for
scaling of waves because, in the present model, conserv
does not introduce any scaling relation among the differ
scaling exponents.

If finite-size scaling applies then these densities w
satisfy

FIG. 2. ProbabilityPz that a site has energyz in the stationary
state for different values ofz52n. z is expressed in units of the
thresholdzc54z11 while Pz has been rescaled by an amountz
because with increasingz the density ofz/zc values increase asz.
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px~x,z!5x2txG@x/xc~z!#, ~8!

wheretx is the power-law exponent characterizing the se
similar regime andxc is a cutoff above which the distribution
deviates from a power law and has a fast decay given byG.
The validity of this scaling form is supported by the nume
cal results. The cutoffxc is determined by the existence o
the characteristic lengthj;zn and is expected to scale a
xc;jDx;zdx, wheredx5Dxn is an effective fractal dimen-
sion.

To compute the exponentstx anddx the moment analysis
technique introduced by De Menechet al. @11# is used. The
moments of the probability density in Eq.~8! are given by

^xq&5E
0

`

dxp~x!xq;zsx(q), ~9!

where

sx~q!5~12tx!dx1dxq. ~10!

The last equivalence in Eq.~9! is valid for values ofq not too
small, for which the precise form ofpx(x,z) at smallx is not
important.

sx(q) can be determined from a linear fit to the log-lo
plot of ^xq& vs z. The resulting values usingz
525, 26, . . . , 210 are shown in Fig. 3. In all cases (x
5s,t,r) for q larger than 1 a well-defined linear dependence
observed. From the linear fit@see Eq.~10!# to these plots the
exponentstx anddx are computed. The results are shown
Table I.

The exponentn is very close to 1/2 in very good agree
ment with the scaling arguments of preceding section. On

TABLE I. Scaling exponents obtained from linear fits@sx(q)
5(12tx)dx1dxq# to the data shown in Fig. 3.

ds dt dr5n ts t t t r

0.994~5! 0.630~5! 0.495~5! 1.11~1! 1.16~1! 1.14~1!

Ds5ds /n z5Dt5dt /n
2.01~1! 1.27~1!

FIG. 3. Moment exponentsx(q) for different values ofq and
x5s,t,r . The lines are linear fits@sx(q)5(12tx)dx1dxq# to the
interval 1>q<3. The resulting exponentstx anddx are shown in
Table I.
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other hand,ds is quite close to 1 which implies that th
avalanche size~or area! scale ass;r 2, i.e., avalanches ar
compact Ds52. With this value, the scaling relation (
2ts)Ds52 yields the power-law exponentts51 which is
clearly in disagreement with the value computed num
cally. The reason for this result is that conservation does
introduce any scaling relation as it generally occurs in sa
pile models@12#.

The exponents computed using the moment analysis t
nique can be checked using rescaled plots of the integr
distribution Px(x,z)5*x

`dxpx(x,z). The resulting plots are
shown in Figs. 4–6. The scaling works quite well support
the validity of the reported exponents.

In the literature we can find other sandpile models w
local dissipation and the BTW-like toppling rule@6–8#. In
the models considered in@6# and @7# the energy profile is
continuous and the dissipation rate per toppling evente is a
control parameter that can take any real value and, there
can be tuned to zero. Another feature of these models is
only one wave of toppling can take place and, therefore,
any finitee the model is in a different universality class fro
that of the BTW model.

On the other hand, in@8# the energy profile is discrete a
in the original BTW model at the prize of introducing st

FIG. 4. Scaled plot of the integrated distribution of avalanc
sizes~or area sinces5a in this model! using the exponents dis
played in Table I.

FIG. 5. Scaled plot of the integrated distribution of avalanc
durations using the exponents displayed in Table I.
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chasticity in the model. In this case with a probabilityp
energy is fully dissipated yielding an average dissipation
toppling evente52dp. Clearlyp may take any real variable
between 0 and 1 and, therefore, also in this case the diss
tion per toppling event can be fine tuned to zero. As a d
ference with the models described in the previous paragra
in this case multiple toppling of a site within an avalanche
possible, which make it closer to the original BTW mod
Moreover, the use of finite-size scaling techniques can
also questioned and a multifractal analysis may be more
propriate@13#, which is another characteristic feature of th
BTW model @4#. All these elements together with the nu
merical results reported in@8# suggest that in the limitp
→1 (e→0) this model belongs to the same universal
class of the BTW model.

A common feature of all these models@6–8# is that ^s&
;e21 as predicted by the field theory approach of Vesp
nani et al. @9#, leading to the scaling relation (22ts)Ds
52. On the contrary, in the present model the scaling of^s&
with ee f f is not known and conservation does not introdu
the above scaling relation. Hence, the model introduced
Tsuchiya and Katori belongs to different class among sa
pile models.

IV. SUMMARY AND CONCLUSIONS

A nonconservative Abelian sandpile model with a BTW
like toppling rule has been studied. The model can
thought of as the only possible generalization of the BT
model to include local dissipation without introducing st
chasticity in the toppling rule and keeping a discrete ene
profile. However, the scaling approach and the numer
simulations reported here show that it does not belong to
universality class of the BTW model, not even to the univ
sality class of any sandpile model previously considered
the literature.
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FIG. 6. Scaled plot of the integrated distribution of the av
lanche radius using the exponents displayed in Table I.
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