PHYSICAL REVIEW E VOLUME 62, NUMBER 6 DECEMBER 2000

Nonconservative Abelian sandpile model with the Bak-Tang-Wiesenfeld toppling rule
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A nonconservative Abelian sandpile model with the Bah-Tang-Wiesenfeld toppling rule introduced by
Tsuchiya and KatorfiPhys. Rev. B61, 1183(2000] is studied. Using a scaling analysis of the different energy
scales involved in the model and numerical simulations it is shown that this model belongs to a universality
class different from that of previous models considered in the literature.

PACS numbdps): 05.65+b, 05.70.Ln

I. INTRODUCTION The main goal of this work is to investigate the scaling
properties of this nonconservative BTW-like model in the
Recently Tsuchiya and KatofiL] have introduced a non- limit «—1. The main questions are related to the existence
conservative Abelian sandpile model with a toppling ruleor not of criticality in the conservative limiz— 1 and if in
similar to that of the well known Bak, Tang, and Wiesenfeldthis limit one recovers the conventional BTW modet 1.
(BTW) sandpile modef2]. The model is defined in a square From the analysis o_f the.energly scales inv_ol_ved in the model
lattice of sizeL and an integer energy profilg is consid-  (Sec. I) and numerical simulationsSec. Il it is concluded
ered. Sites with energy below the threshad=4a¢ are that the model is critical whem— 1 but it does not belong
stable. If the energy at any given sité,j) exceeds this © the universality class of the BTW model. Its relation to

threshold the site transfers energy to its four nearest neigﬁztlhe_r ?or&conze.rv?glv?tmo?elg V\é'th thle B(;I’W—hke toppling
bors following the toppling rulez;, 2, —z¢, Z+1;— 21, rule introduced in the literaturfs—8] is also discusseSec.

+{ and zj.,—2zj+1+{. {is an integer number and is ).
such thatz, is also an integer. The boundaries are assumed to
be open and the system is perturbed by adding a unit of Il. SCALING LAWS

energy at a site selected at random and letting it evolve until In this section some scaling laws are derived based on the

an equilibrium configuration is reached. energy scales involved in the model. The main idea of this
On each toppling event an amount of energy4{(a  approach is that the balance between input and dissipation of
—1)>0 is dissipated. Forr=1 the model is conservative; it energy determines the scaling of some magnitudes with the
is just the BTW model but with a different scale of toppling dissipation per toppling event, following the general guide-
and energy addition. In the BTW modél] the energy added |ines introduced by Vespiganast al. [9]. For this purpose
to perturb the system is 1 and on toppling an active sitghe avalanches are assumed to be instantaneous and the
transfers an energy 1 to each neighbor; they are of the sanaalysis is focused on the time scale of the driving field. On
order. In the model defined above the energy added is still #ach step one adds 1 unit of energy and measures the top-
but the energy transferred on topplingdsIn the limit «  pling activity and the energy dissipated. On each toppling
=1 and{=1 the BTW model 2] is recovered while fox =~ event an amount of energy=4{(a—1) is locally dissi-
=1 and{>1 it is similar to the BTW model but with a pated while an amount#is transferred to nearest neighbors.
uniform driving. For boundary sites part of the energy is also dissipated
In the BTW model ¢=1 and{=1) the avalanches can through the boundary.
be decomposed in a sequence of subavalanches called waves_et G(r) be the Green functiofil0], the average number
[3] with well-defined finite-size scaling properties. On the of toppling events at a distangefrom the site where the
contrary, the distribution of the overall avalanche sizis  energy was added. Close tte-0 the effect of local dissipa-
better described using a multifractal analyigl$ The break tion gives a small contribution and the main energy scale is
down of the finite-size scaling has been recently shown to bgiven by the transport of the energy from active sites to their
a consequence of the existence of correlations in the seearest neighbors. On the contrary, far fromO0 the effects
qguence of wave§s]. of the local dissipation becomes more important. How far
For a>1 the model is nonconservative but still Abelian will depend on the certain correlation lengthsuch that for
[1]. In the thermodynamic limit — o, exact calculations by r<¢ transport is more important than local dissipation while
Tsuchiya and Katori yield the mean avalanche sirelud-  for r> ¢ the opposite occurs.
ing avalanches with size zero(T)=e"! [1]. Since € Thus, there are two characteristic lengths in this model:
=4{(a—1) they concluded that in the limi&#—1(T) di- the system siz& and the correlation length. The analysis
verges. However, as it is shown in Sec. Il this conclusion isdeveloped above is valid in the thermodynamic limit €.
wrong becauser cannot go to zero in an arbitrary way, in In this case the dissipation through the boundary of the sys-
order to satisfy the constraint that=4«{ remains integer. tem is negligible in comparison with the energy dissipated on
Here it is demonstrated that=1 and, therefore(T)<1 for  each toppling event. In such a situation the only way to reach
all possible values of and «. a stationary state is to balance the input of energy from the
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driving field with the energy locally dissipated. Moreover, 12

a 1ogy, '
since¢ is the only characteristic lengi®(r) is expected to o -(;)L%boljspz
satisfy the scaling law 10t

G(r)=r"""FAr/¢), (1) o |
where 7 is an scaling exponent artlis the spatial dimen-
sion. 6
The amount of energgE (r) locally dissipated inside a
hypercircle of radius is 4r
r
R L R B
0

. . 0
wheref(x)zf’gdyy”‘lf(y) and the second proportionality o 1 2 3 4 5 6 7 8 9 10
is obtained using Eq(l). On the other hand, the average logiy §
energy transported through its bounday,(r) is given by
dG FIG. 1. Log-log plot of the mean avalanche si@xcluding
5Et(r):>c§rd’1—(r)oc{f”’zg(rlf) 3) avalanches with size=0) as a functiory. It can be clearly seen
dr ’ that it scales asP;l, the probability per unit step to obtain an

Whereg(x)Zd[x”’ZJ—'(x)]/dx and the second proportional- avalanche witts>0. The line is a linear fit to the high interval.

ity is obtained using Eq.l). The correlation lengtl§ can be
defined as the radiusat which these two contributions be-
come of the same order. With this definition and equatin

Egs.(2) and(3) with r=¢£ it results that field theory approach of Vespignast al. [9] the fact that
2\’ 1 (T) does not diverge wheggi;—0 ({—) excludes this
f”(;) Vo5 (4 model from their analysis.
Moreover, in previous sandpile models conservation im-
On the other hand, on each step 1 unit of energy is addeplies the scaling law(s)~ &%, where(s) is the mean ava-
and on average the amoue{T) is dissipated, wheréT) lanche size excluding those with size[@]. To investigate
« [odrrd=1G(r) is the mean avalanche size, including ava-the validity of such a scaling relation for the present model
lanches with size 0. Equating these two contributions it relet us take into account th&s) is related to(T) through the
sults that expression

eter is thereg¢=€/ ¢, i.€., the energy dissipated per toppling
event relative to the characteristic energy scale of transport
gg. Although this result is in complete agreement with the

(8)=(T)/Pa, (7)

where P, is the probability of obtaining an avalanche with

nonzero size. In the models considered by Vespigeaai.

[9] =1 and, therefore, from Eq$4), (5), and(7) it results
7n=0. (6) that (s)~ £2/P,. Moreover, in this modeP, has a finite

value and, therefore, one obtains the mentioned scaling law
Equation(5) reproduces the exact result by Tsuchiya and(s)~ 2,

Katori. The present approach is, however, based on more On the contrary, in the model considered hésp cannot

general arguments and can be easily adapted to any sandpig related ta using these arguments. For fixedrom Egs.

model with local dissipation. The same arguméemergy  (5) and(7) one obtains tha¢s)~1/P,. Thus, from the en-

balancg has been previously used by Vespiganehal.[9]  ergy balance invoked above we cannot say anything about

to understand the scaling properties of other sandpile modege scaling of s) with £ (an exponent 2 will be an accidental

with local dissipation. Here, a slightly different approach hasggincidencgand, therefore, this model belongs to a new uni-
been considered where the new paramétethe ratio be-  yersality class.

tween the energy received from nearest active neighbors and
from the driving field, has been taken into account.

From Eq.(5) Tsuchiya and Katori concluded that when
a— 1(T) diverges. However, this conclusion is not valid if  In this section results obtained from numerical simula-
z.=4l«a is restricted to be an integer number. To show thistions of the model studied above are presented. The simula-
let us write @=1+ €/4{ which follows from Eq.(5). But  tions were performed using=1, L=4096, and{ ranging
47a=47+ € is restricted to take integer values. Wighbe-  from 2° to 21° (e.¢¢= 1/ ranging from 1 to 219 . For these
ing an integer number the only way to satisfy this require-values the conditiol. < ¢ was observed to be satisfied. Sta-

1 1
<T>:Z:4§(a——1)' (5)

Moreover, using Eq(1) one obtains

IIl. NUMERICAL SIMULATIONS AND DISCUSSION

ment is thate is also integer, i.e€=1,2,3 ... . Then, since tistics was taken over f£0avalanches after the system
the smaller non-negative integer is 1 it is concluded that reached the stationary state.
=1 and, therefore, from Ed5) (T)<1, i.e., it is bounded. Before entering in the analysis of the statistics of the ava-

Nevertheless, the correlation lengfhin Eq. (4) does not lanches let us check the validity of E¢). The log-log plot
only depend ore but also or?. For fixede it diverges inthe of (s) vs ¢ is shown in Fig. 1. A clear linear behavior is
limit /—< and the model is critical. The real control param- observed for logg/=5 suggesting that above this value
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FIG. 2. ProbabilityP, that a site has energyin the stationary FIG. 3. Moment exponent,(q) for different values ofg and

state for different values of=2". z is expressed in units of the x=s,t,r. The lines are linear fitgo,(q) = (1— 7,)d,+d,q] to the
thresholdz,=4¢+1 while P, has been rescaled by an amoynt interval 1=q=<3. The resulting exponents, andd, are shown in
because with increasingthe density ofz/z, values increase a& Table I.

simple scaling applies. On top of these points the numeri- T

cally computed values of B/, are plotted obtaining an over- Px(X, D) =x" XX )], ®

lap in agreement with Eq(5). If the scaling relatiorys) where 7, is the power-law exponent characterizing the self-

~ &2 were valid, using Eq(4), (s)~ {. However, a linear fit  similar regime and. is a cutoff above which the distribution

to this log-log plot gives a slope-0.9. deviates from a power law and has a fast decay giveg.by
The fact that this scaling relation does not hold is clearlyThe validity of this scaling form is supported by the numeri-

shown in Fig. 2, where the stationary energy distribution iscal results. The cutofk. is determined by the existence of

shown. As can be seeldPa={P(; 1 increases with in- the characteristic lengtlj~ > and is expected to scale as

creasing and, thereforeP, decreases more slowly than Xc™ £Px~ %, whered,=D,v is an effective fractal dimen-
1/¢. The rest of the distribution scales likezhich is just ~ SION.

a consequence of the increase of the density of possible val- To compute the exponents andd, the moment analysis
ues ofz. technique introduced by De Meneehal.[11] is used. The
The avalanche statistics will be characterized by the nummoments of the probability density in E(B) are given by

ber of toppling events and steps required to reach a stable -

configuration, the number of sites“touched” by the ava- <xq>=f dxp(x)x9~ 7@, 9)

lanche, and the characteristic radius of the cluster formed by 0

these sites. The main goal of the simulations is to deter-

mine the probability densitiep,(x,{) (x=s,t,a,r) in the

stationary state. oy(q)=(1—7)d,+d,qQ. (10
One can easily see thata; in other words sites topple ) . . _

only once within an avalanche. In this model, as a differencd "€ last equivalence in E(p) is valid for values ofy not too

with the original BTW model, only one wave of topplings SM&ll, for which the precise form ,(x,¢) at smallx is not

takes place. The first wave is generated from an initial sitdMPortant. _ _ _

with heightz=z.=4¢+ €. When this site topples it transfers _ 9x(d) can be determined from a linear fit to the log-log

an amount equal tg, to its nearest neighbors and, therefore,plc’t5 Ofe (x% v . The resulting values usingl

ends with energz=0. The best we can have to obtain a =2+ 2 -+ 2! are shown in Fig. 3. In all cases (-

second toppling at this site is that its four nearest neighbor& Str) for g larger tha 1 a well-defined linear dependence is

also become active. In such a case the initial side will receiv@0served. From the linear fisee Eq(10)] to these plots the

4¢ <z, units of energy, which is not enough to make it active €xponentsr, andd, are computed. The results are shown in

again. Hence, no second wave will be obtained yielding Table I. ) .
—a. The exponent is very close to 1/2 in very good agree-

Since the waves are known to satisfy well-defined finite_-ment with the scaling arguments of preceding section. On the
size scaling properties and in the present model an avalanche
is made by one wave, it is expected that the distributions_
p«(x,{) also satisfy a finite-size scaling. However, the scal-_
ing exponents will not necessarily be those obtained for the

where

TABLE I. Scaling exponents obtained from linear fits,(q)
(1-7)d,+d,q] to the data shown in Fig. 3.

scaling of waves because, in the present model, conservation_"° d d=v T n r
does not introduce any scaling relation among the different.9945) 0.63Q5) 0.4955) 1.11(1) 1.161) 1.141)
scaling exponents. D,=d,/v z=D=d;/v

If finite-size scaling applies then these densities will2. 011) 1.271)

satisfy
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FIG. 4. Scaled plot of the integrated distribution of avalanche FIG. 6. Scaled plot of the integrated distribution of the ava-
sizes(or area sinces=a in this mode] using the exponents dis- lanche radius using the exponents displayed in Table I.
played in Table I.

chasticity in the model. In this case with a probabiljy
energy is fully dissipated yielding an average dissipation per
toppling evente=2dp. Clearlyp may take any real variable

other hand,ds is quite close to 1 which implies that the
avalanche sizéor area scale as~r?, i.e., avalanches are

compactDg=2. With this value, the scaling relation (2 petween 0 and 1 and, therefore, also in this case the dissipa-
—15)Ds=2 yields the power-law exponent=1 which is  ion per toppling event can be fine tuned to zero. As a dif-
clearly in disagreement with the value computed numerifgrence with the models described in the previous paragraph,
cally. The reason for this result is that conservation does ng thjs case multiple toppling of a site within an avalanche is
mtroduce any scaling relation as it generally occurs in Sa”dpossible, which make it closer to the original BTW model.
pile models[12]. _ ) Moreover, the use of finite-size scaling techniques can be
~ The exponents computed using the moment analysis techyso questioned and a multifractal analysis may be more ap-
nique can be checked using rescaled plots of the integratggtopriate[13], which is another characteristic feature of the
distribution Py(x,¢) = [ dxp(x,{). The resulting plots are  BTW model[4]. All these elements together with the nu-
shown in Figs. 4-6. The scaling works quite well supportingmerical results reported if8] suggest that in the limip

the validity of the reported exponents. _ =1 (e—0) this model belongs to the same universality
In the literature we can find other sandpile models with¢|ass of the BTW model.

local dissipation and the BTW-like toppling ru[@-38]. In A common feature of all these moddle—§] is that(s)
the models considered if6] and[7] the energy profile is _¢~1 a5 predicted by the field theory approach of Vespig-
continuous and the dissipation rate per toppling eeista  nani et al. [9], leading to the scaling relation (2r5)Ds
control parameter that can take any real value and, therefore, 2 on the contrary, in the present model the scalingspf
can be tuned to zero. Another feature of these models is thgjith .., is not known and conservation does not introduce
only one wave of toppling can take place and, therefore, fofhe ahove scaling relation. Hence, the model introduced by

any finitee the model is in a different universality class from Tgychiya and Katori belongs to different class among sand-
that of the BTW model. pile models.

On the other hand, i8] the energy profile is discrete as
in the original BTW model at the prize of introducing sto-

IV. SUMMARY AND CONCLUSIONS
1

. A nonconservative Abelian sandpile model with a BTW-
0r T 1 like toppling rule has been studied. The model can be
thought of as the only possible generalization of the BTW
model to include local dissipation without introducing sto-
chasticity in the toppling rule and keeping a discrete energy
profile. However, the scaling approach and the numerical
simulations reported here show that it does not belong to the
universality class of the BTW model, not even to the univer-
sality class of any sandpile model previously considered in
the literature.
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